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Abstract

We want to detect small obstacles immersed in a fluid flowing in a larger bounded
domain Ω in the three dimensional case. We assume that the fluid motion is governed
by the steady-state Stokes equations. We make a measurement on a part of the exterior
boundary ∂Ω and then have a Kohn-Vogelius approach to locate these obstacles. We
use here the notion of topological derivative in order to determine the number of
objects and their rough location. Thus, we first establish an asymptotic expansion of
the solution of the Stokes equations in Ω when we add small obstacles inside. Then,
we use it to find a topological asymptotic expansion of the considered Kohn-Vogelius
functional, which give us a formula of its topological gradient. Finally, we make some
numerical simulations, exploring the efficiency and the limits of this method.

Keywords: Geometric inverse problem, topological sensitivity analysis, topological gra-
dient, Stokes equations, Kohn-Vogelius functional.

AMS Classification: 49Q10, 35R30, 74P15, 49Q12, 76D55.

1 Introduction

The detection of objects immersed in a fluid can be seen as a minimization of a shape
functional using shape gradient (see [33, 34, 2, 13]). However this approach does not
permit to modify the topology of the obstacles. In particular, we have to know how many
objects are present to reconstruct them.

We make the assumption of small size of the objects to use asymptotic formulae which
allows us to change of point of view (see the works of Ammari et al. [6, 5, 8, 7, 4]). Then, we
use the notion of topological gradient in order to determine the number of objects and their
rough location, i.e. to have an initialization for a shape gradient algorithm. The topological
sensitivity analysis consists in studying the variation of a shape functional with respect to
the modification of the topology of the domain. It was introduced by Schumacher in [42]
and Sokolowski et al. in [43] for the compliance minimization in linear elasticity. Then,
Masmoudi studied the Laplace equation case introducing a generalization of the adjoint
method (see [22]) and the use of a truncation technique to give a topological sensitivity
framework on a fixed functional space. By using this approach, the topological asymptotic
expansion of a large class of shape functionals was given for the linear elasticity by Garreau
et al. in [27] and for the Poisson and the Stokes equations by Guillaume et al. in [29, 30].
The Helmoltz equations was also studied by Samet et al. in [12, 41] and the quasi-Stokes
problem by Hassine et al. in [32]. The topological sensitivity was also used to elastic-wave
imaging of finite solid bodies containing cavities by Bonnet et al. in [18], or in the study of
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the Maxwell equations by Masmoudi et al. in [36] or even in the study of electrodynamic
and acoustic inverse scattering in the time domain by Bonnet in [17].

This kind of inverse problems arises, for example, in moulds filling during which small
gas bubbles can be created and trapped inside the material (as it is mentioned in [14]) or
in the detection of mines. This last topic is treated in the electrical impedance tomography
case by Brühl et al. in [20]. They use asymptotic analysis to design a direct (i.e. non-
iterative) reconstruction algorithm thanks to an explicit characterization of the inclusions.

In this paper, we study the Stokes equations in the three dimensional case. We want
to detect some obstacles immersed in a fluid flowing in a larger bounded domain Ω. We
make a boundary measurement on the part of the exterior boundary ∂Ω and then study
a Kohn-Vogelius type cost functional. The topological asymptotic expansion of this kind
of functional has studied by Ben Abda et al. in [14] but they impose Neumann boundary
conditions on the boundary of the objects. Here, we have to deal with Dirichlet boundary
conditions on the inclusions boundaries and the Kohn-Vogelius approach leads to consider
Dirichlet and mixed boundary conditions on the exterior boundary. These modifications
lead additional difficulties.

The paper is organized as follows. First, we introduce the adopted notations. Then,
in Section 2, we present in details the considered problem and give the main idea used to
study it: we introduce some perturbed domains and the considered Kohn-Vogelius func-
tional. Section 3 is devoted to the statement of the main results. We give the topological
asymptotic expansion of this functional, in particular when we add spherical objects. In-
deed, in this very particular case, we have an explicit formula for the topological gradient.
In Section 4, we prove the asymptotic expansion of the solution of the considered Stokes
problems when we add small obstacles inside. Then, we use the resulting estimates to
prove the main results by splitting the functional in Section 5. Finally, we make numerical
attempts in Section 6. We explore the efficiency of this method and point out these limits.
Technical results needed to justify the expansions are postponed in appendices.

2 The problem setting

Introduction of the general notations. For a bounded Lipschitz open set Ω ⊂ R3, we
denote by Lp(Ω), Wm,p(Ω) and Hs(Ω) the usual Lebesgue and Sobolev spaces. We note in
bold the vectorial functions and spaces: Lp(Ω), Wm,p(Ω), Hs(Ω), etc. Moreover, we denote
by W1,p

α (Ω) the weighted Sobolev spaces defined in Appendix B. For k ∈ N, we notice ‖·‖k,Ω
the norm ‖·‖Hk(Ω) and |·|1,Ω the semi-norm of H1(Ω). We also use the notations ‖·‖1/2,∂Ω

and ‖·‖−1/2,∂Ω to define respectively the norms ‖·‖H1/2(∂Ω) and ‖·‖H−1/2(∂Ω). We represent
the duality product between H−1/2(∂Ω) and H1/2(∂Ω) using the notation 〈· , ·〉∂Ω. Finally,
n represents the external unit normal to ∂Ω and we define the space

L2
0(Ω) :=

{
p ∈ L2(Ω),

∫
Ω
p = 0

}
.

We here precise that the notation
∫

Ω means
∫

Ω p(x)dx which is the classical Lebesgue inte-
gral. Moreover, we use the notation

∫
∂Ω p to denote the boundary integral

∫
∂Ω p(x)ds(x),

where ds represents the surface measure on the boundary. The aim is to simplify the
notations when there is no confusion.

Framework. Let Ω be a bounded Lipschitz open set of R3 containing a Newtonian and
incompressible fluid with coefficient of kinematic viscosity ν > 0. Let ω ⊂ R3 a fixed
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bounded Lipschitz domain containing the origin. For z ∈ Ω and ε > 0, we denote

ωz,ε := z + εω.

The aim of this work is to detect some unknown objects included in Ω. We assume that
a finite number m∗ of obstacles ω∗z,ε ⊂ Ω have to be detected. Moreover, we assume that
they are well separated and have the geometry form

ω∗zk,ε = z∗k + εω∗k, 1 ≤ k ≤ m∗,

where ε is the shared diameter and ω∗k ⊂ R3 are bounded Lipschitz domains containing the
origin. The points z∗k ∈ Ω, 1 ≤ k ≤ m∗, determine the location of the objects. Finally, we
assume that, for all 1 ≤ k ≤ m∗, ω∗zk,ε is far from the boundary ∂Ω.

Let f ∈ H1/2(∂Ω) such that f 6= 0 satisfying the compatibility condition∫
∂Ω
f · n = 0. (2.1)

In order to determine the location of the objects, we make a measurement g ∈ H−1/2(O)
on a part O of the exterior boundary ∂Ω with O  ∂Ω. Then, we notice ω∗ε :=

⋃m∗

k=1 ω
∗
zk,ε

and consider the following overdetermined Stokes problem
−ν∆u+∇p = 0 in Ω\ω∗ε

divu = 0 in Ω\ω∗ε
u = f on ∂Ω
u = 0 on ∂ω∗ε

σ(u, p)n = g on O ⊂ ∂Ω.

(2.2)

Here σ(u, p) represents the stress tensor defined by

σ(u, p) := ν
(
∇u+ t∇u

)
− pI.

Notice that, if divu = 0 in Ω, we have

−ν∆u+∇p = −div (νD(u)) +∇p = −div (σ(u, p)) in Ω,

with D(u) :=
(
∇u+ t∇u

)
. Therefore, we can consider two problems:

Find (uεD, p
ε
D) ∈ H1(Ω\ωε)× L2

0(Ω\ωε) such that
−ν∆uεD +∇pεD = 0 in Ω\ωε

divuεD = 0 in Ω\ωε
uεD = f on ∂Ω
uεD = 0 on ∂ωε

(2.3)

and 

Find (uεN , p
ε
N ) ∈ H1(Ω\ωε)× L2(Ω\ωε) such that

−ν∆uεN +∇pεN = 0 in Ω\ωε
divuεN = 0 in Ω\ωε

σ(uεN , p
ε
N )n = g on O

uεN = f on ∂Ω\O
uεN = 0 on ∂ωε,

(2.4)

where ωε :=
⋃m
k=1 ωzk,ε for a finite number m of objects located in z1, . . . , zm. These

problems are classically well-defined. We refer to [19, 26] for the results of existence and
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uniqueness of (uεD, p
ε
D). Notice that the compatibility condition (2.1) associated to Pro-

blem (2.3) is satisfied. The existence and the uniqueness of (uεN , p
ε
N ) is guaranteed by

Theorem A.1 recalled in Appendix A.
One can remark that if ωε coincides with the actual domain ω∗ε , then uεD = uεN in Ω\ωε.

According to this observation, we propose a resolution of the inverse problem of reconstruct-
ing ω∗ε based on the minimization of the following Kohn-Vogelius functional

FKVε (uεD,u
ε
N ) :=

1

2

∫
Ω\ωε

ν|D(uεD)−D(uεN )|2.

We then define
JKV (Ω\ωε) := FKVε (uεD,u

ε
N ).

Remark 2.1. In order to guarantee that the inverse problem of finding ω∗ε and a pair (u, p)
satisfying (2.2) has a solution, we have to assume the existence of such a ω∗ε . This means
that the measurement g is perfect, that is to say without error. Then, according to the
identifiability result [4, Theorem 1.2] proved by Alvarez et al., the domain ω∗ε is unique.
Notice that in [4], ω∗ε is assumed to have a C1,1 boundary but we can only assume that it
has a Lipschitz boundary in the Stokes case (see [14, Theorem 2.1]). Hence, if we find ω∗ε
such that J(Ω \ω∗ε) = 0, then uεD = uεN in Ω \ω∗ε , i.e. uεD satisfies (2.2) and thus ωε = ω∗ε
is the real domain.

Remark 2.2. In the following u0
D, u

0
N , Ω0, etc. will denote respectively the solutions, the

domain, etc. when ωε = ∅ and not ωε = ω0 =
⋃m
k=1 {zk}.

3 The main results

From now, we consider that we seek a single obstacle ωz,ε := z + εω, located at a point
z ∈ Ω. Notice that in the case of several inclusions, we proceed by detecting the objects one
by one. Thus, after detecting a first obstacle ωz1,ε1 , we work replacing the whole domain Ω
by Ω\ωz1,ω1 (and then we have ∂ωz1,ε1 ⊂ ∂ (Ω\ωz1,ω1) \O) and the results presented below
(in particular the topological derivative) are still valid for a new inclusion ωz,ε. Note that,
the asymptotic expansion of the solution of elliptic boundary value problem in multiply
perforated domains is studied in [15, 37].

3.1 Introduction of the needed functional tools

We recall that the topological sensitivity analysis consists in the study of the variations of
a design functional J with respect to the insertion of a small hole (here an object) ωz,ε at
the point z ∈ Ω. The aim is to obtain an asymptotic expansion of J of the form

J (Ωz,ε) = J (Ω) + ξ(ε)δJ (z) + o(ξ(ε)) ∀z ∈ Ω,

where ε > 0, where ξ is a positive scalar function which going to zero with ε and where

Ωz,ε := Ω\ωz,ε,

with ωz,ε := z + εω. We summarize the notations concerning the domains in Figure 1.
The computation of the topological gradient δJ exposed below is strongly influenced

by the paper of Ben Abda et al. [14]. We were also inspired by the works of Guillaume
et al. [30], of Abdelwahed et al. [1] and of Hassine [31]. In [30], they use the Masmoudi’s
approach mentioned in the introduction. Here, we do not use this truncation technique

4



O

Ω
∂Ωωz,ε

Ωz,ε

Figure 1: The initial domain and the same domain after inclusion of an object

but we follow the simplified approach presented in [14] (see also [1] and [31]). However,
contrary to the problem studied in [14], we impose Dirichlet boundary conditions on the
interior boundary. Moreover, contrary to [1] and [31], we have here to consider mixed
boundary conditions on the exterior boundary (due to our Kohn-Vogelius approach).

We recall the expression of the fundamental solution (E,P ) to the Stokes system in R3

given by

E(x) =
1

8πν ‖x‖
(
I + er

ter
)
, P (x) =

x

4π ‖x‖3
, (3.1)

with er =
x

‖x‖
; that is −ν∆Ej + ∇P j = δej , where Ej denotes the jth column of E,

(ej)
3
j=1 is the canonical basis of R3 and δ is the Dirac distribution.

3.2 The results

The following theorem give us the expression of the topological gradient of the Kohn-
Vogelius functional JKV :

Theorem 3.1. For z ∈ Ω, the functional JKV admits the following topological asymptotic
expansion

JKV (Ωz,ε)− JKV (Ω) = ε

[
−
(∫

∂ω
ηD

)
· u0

D(z) +

(∫
∂ω
ηN

)
· u0

N (z)

]
+ o(ε),

where u0
D ∈ H1(Ω) and u0

N ∈ H1(Ω) solve respectively Problems (2.3) and (2.4) with
ωε = ∅ and where η\ ∈ H−1/2(∂ω)/Rn (with the subscript \ = D and \ = N respectively)
is the respective solution of∫

∂ω
E(y − x)η\(x)ds(x) = −u0

\ (y) ∀y ∈ ∂ω. (3.2)

In the case of spherical objects ω = B(0, 1), we get a more explicit formula for the
topological gradient of JKV . Indeed,∫

∂ω
ηD = −6πνu0

D(z) and
∫
∂ω
ηN = −6πνu0

N (z)

holds in this very particular case (see for example [30, Proof of Corollary 4.2]). Then, we
obtain the following corollary:
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Corollary 3.2. If ω = B(0, 1) then, for z ∈ Ω, the functional JKV admits the following
topological asymptotic expansion

JKV (Ωz,ε)− JKV (Ω) = 6πνε
(∣∣u0

D(z)
∣∣2 − ∣∣u0

N (z)
∣∣2)+ o(ε), (3.3)

where u0
D ∈ H1(Ω) and u0

N ∈ H1(Ω) solve respectively Problems (2.3) and (2.4) with
ωε = ∅.

4 Asymptotic expansion of the solution of the Stokes problem

In order to provide an asymptotic expansion of the Kohn-Vogelius functional JKV , we need
first an asymptotic expansion of the solution of the Stokes problems (2.3) and (2.4). In
this section, we will work with exterior Stokes problems for which the theoretical tools are
recalled in Appendix B (in particular the definition of weighted Sobolev space W1,2

0 ).
We recall that we here focus on the detection of a single obstacle (see the beginning of

Section 3). This section is devoted to the proof of the following proposition:

Proposition 4.1. The respective solutions uεD ∈ H1(Ωz,ε) and uεN ∈ H1(Ωz,ε) of Prob-
lems 2.3 and 2.4 admit the following asymptotic expansion (with the subscript \ = D and
\ = N respectively):

uε\(x) = u0
\ (x) +U \

(
x− z
ε

)
+OH1(Ωz,ε)

(ε),

where (U \, P\) ∈W1,2
0 (R3\ω)× L2(R3\ω) solves the following Stokes exterior problem

−ν∆U \ +∇P\ = 0 in R3\ω
divU \ = 0 in R3\ω

U \ = −u0
\ (z) on ∂ω.

(4.1)

The notation OH1(Ωz,ε)
(ε) means that there exist a constant c > 0 (independent of ε) and

ε1 > 0 such that for all 0 < ε < ε1∥∥∥∥uε\(x)− u0
\ (x)−U \

(
x− z
ε

)∥∥∥∥
1,Ωz,ε

≤ c ε.

We only detail the Neumann case \ = N . The Dirichlet case \ = D is a direct adaptation
of this Neumann case (we also refer to [31, Proposition 3.1] and [1, Proposition 3.1]). We
use uniform a priori estimates as what is done in [30], [31] or [1]. An alternative method
to obtain the same result consists to use multi-scale expansion and the notion of profile
(see [16], [24] or [38]).

4.1 Some notations and preliminaries

By Cauchy-Schartz and Korn’s inequalities (see for example [35, Lemma 5.4.4]), for u ∈
H1(Ω), the norm

|||u||| :=
(∫

Ω
|D(u)|2 + |u|2

)1/2

is equivalent to the norm ‖u‖1,Ω. Let us also note that, for u,v ∈ H1(Ω),∫
Ω
D(u) :D(v) = 2

∫
Ω
D(u) :∇v. (4.2)
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Moreover, for a given function u ∈ H1(Ω), we define the function ũ on Ω̃ := Ω/ε by
ũ(y) = u(x), y = x/ε. Using that ∇xu(x) = (∇yũ(y))/ε, we obtain

|u|21,Ω =

∫
Ω
|∇xu(x)|2 dx = ε

∫
Ω̃
|∇yũ(y)|2 dy.

Hence,
|u|1,Ω = ε1/2 |ũ|

1,Ω̃
. (4.3)

Similarly, we obtain
‖u‖0,Ω = ε3/2 ‖ũ‖

0,Ω̃
. (4.4)

By changing the origin, the same equalities hold with the change of variables y = (x−z)/ε,
for z ∈ Ω.

Finally, let us introduce some other domains. Let R > 0 be such that the closed ball
B(z,R) is included in Ω and ωz,ε ⊂ B(z,R). We define the domains

Ωz
R := Ω\B(z,R) and Dz

ε := B(z,R)\ωz,ε

(see Figure 2). Thus, in particular, we denote Ω0
R := Ω\B(0, R) and D0

ε := B(0, R)\εω.

∂Ωωz,ε

B(z,R)

Ωz
R Dz

ε

Figure 2: The truncated domain

4.2 Uniform a priori estimates

In order to prove Proposition 4.1, we will use uniform a priori estimates given by the two
following lemmas.

This first lemma is quoted in [30, Lemma 6.2] (see also [31, Lemma 3.1] or [32,
Lemma 7.1]) but we recall its proof for the reader’s convenience:

Lemma 4.2 (Guillaume et al., [30]). Let g ∈ H1/2(∂ω) such that
∫
∂ω
g · n = 0. We

consider (w, s) ∈W1,2
0 (R3\ω)× L2(R3\ω) the solution of the Stokes exterior problem

−ν∆w +∇s = 0 in R3\ω
divw = 0 in R3\ω

w = g on ∂ω.

Then there exists a constant c > 0 (independent of ε and g) and ε1 > 0 such that for all
0 < ε < ε1

‖w‖0,D0
ε/ε

≤ c ε−1/2 ‖g‖1/2,∂ω , ‖w‖0,Ω0
R/ε

≤ c ε−1/2 ‖g‖1/2,∂ω ,
|w|1,D0

ε/ε
≤ c ‖g‖1/2,∂ω and |w|1,Ω0

R/ε
≤ c ε1/2 ‖g‖1/2,∂ω .
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Proof. According to the representation formula (see Theorem B.3), since
∫
∂ω
g ·n = 0, the

velocity w can be written as

w(y) = Sη(y) =

∫
∂ω
E(y − x)η(x)ds(x), y ∈ R3\ω, (4.5)

where η ∈ H−1/2(∂ω)/R is the unique solution of

Sη(y) = g(y) ∀y ∈ ∂ω (4.6)

(the simple layer hydrodynamic potential operator S and the relation R being defined in
Theorem B.3 and the Green function associated to the Stokes system E by (3.1)). Then,
using a first order Taylor expansion of E, we have, for x in a bounded domain and y going
to infinity,

E(y − x) = E(y) +O

(
1

‖y‖2

)
and ∇E(y − x) = ∇E(y) +O

(
1

‖y‖3

)
and using (4.5),

w(y) = E(y) 〈η , 1〉−1/2,1/2,∂ω +O

(
1

‖y‖2

)
〈η , 1〉−1/2,1/2,∂ω

(with O
(

1
‖y‖2

)
uniform in x). Moreover, since S is an isomorphism from H−1/2(∂ω)/R

into
{
g ∈ H1/2(∂ω),

∫
∂ω
g · n = 0

}
(see Theorem B.3), we have, according to (4.6),

‖η‖−1/2,∂ω ≤ c ‖g‖1/2,∂ω .

Then, since |E(y)| ≤ c
‖y‖ , there exists M > 0 such that, for ‖y‖ > M ,

|w(y)| ≤ c

‖y‖
‖g‖1/2,∂ω +

c

‖y‖2
‖g‖1/2,∂ω . (4.7)

We differentiate under the sum sign in (4.5) and proceed as above using the fact that
|∇E(y)| ≤ c

‖y‖2 to obtain that for ‖y‖ > M (even if we have to increase M)

|∇w(y)| ≤ c

‖y‖2
‖g‖1/2,∂ω +

c

‖y‖3
‖g‖1/2,∂ω . (4.8)

Notice that since the upper bounds for w and its gradient (see (4.7) and (4.8)) are
valid only for ‖y‖ > M , that is far away of ∂ω, we can not obtain directly the estimates
on D0

ε/ε. We split them in two estimates: one on B(0,M)\ω and one on B(0, Rε )\B(0,M)
(where we can use the above inequalities).

Using the change of variables x = εy, Inequalities (4.7) and (4.8) are valid for ε < R/M
and

‖w‖
0,B(0,R

ε
)\B(0,M)

≤ c

(∫
B(0,R)\B(0,εM)

ε2

‖x‖2
1

ε3

)1/2

‖g‖1/2,∂ω + c

(∫
B(0,R)\B(0,εM)

ε4

‖x‖4
1

ε3

)1/2

‖g‖1/2,∂ω

≤ c

(∫
B(0,R)

ε2

‖x‖2
1

ε3

)1/2

‖g‖1/2,∂ω + c

(∫
B(0,R)

ε4

‖x‖4
1

ε3

)1/2

‖g‖1/2,∂ω

≤ c ε−1/2 ‖g‖1/2,∂ω + c ε1/2 ‖g‖1/2,∂ω . (4.9)
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Moreover, since the weight ρ defined in Appendix B is bounded from above and below in
B(0,M)\ω by non-negative constants and according to the definition of the norm ‖·‖

W1,2
0
,

there exists a constant c > 0 such that ‖w‖1,B(0,M)\ω ≤ c ‖w‖
W1,2

0 (B(0,M)\ω)
. Using the a

priori estimate in Theorem B.2, we also obtain ‖w‖
W1,2

0 (R3\ω)
≤ c ‖g‖1/2,∂ω . Then,

‖w‖1,B(0,M)\ω ≤ c ‖g‖1/2,∂ω . (4.10)

Gathering the estimates on each subdomains (4.9) and (4.10), we obtain the global estimate

‖w‖
0,
D0
ε
ε

≤ c ε−1/2 ‖g‖1/2,∂ω .

Similarly, we obtain |w|
1,B(0,R

ε
)\B(0,M)

≤ c ε1/2 ‖g‖1/2,∂ω + c ε3/2 ‖g‖1/2,∂ω and then,
using (4.10),

|w|
1,
D0
ε
ε

≤ c ‖g‖1/2,∂ω .

Finally, without splitting the norm in two, we obtain

‖w‖
0,

Ω0
R
ε

≤ c ε−1/2 ‖g‖1/2,∂ω + c ε1/2 ‖g‖1/2,∂ω

|w|
1,

Ω0
R
ε

≤ c ε1/2 ‖g‖1/2,∂ω + c ε3/2 ‖g‖1/2,∂ω .

Next we want to prove the following lemma:

Lemma 4.3. For ϕ ∈ H−1/2(O), Φ ∈ H1/2(∂Ω\O), Ψ ∈ H1(D0) such that div Ψ = 0
and ε > 0, let (vε, qε) ∈ H1(Ωz,ε)× L2(Ωz,ε) be the solution of the Stokes problem

−ν∆uε +∇pε = 0 in Ωz,ε

divuε = 0 in Ωz,ε

σ(uε, pε)n = ϕ on O

uε = Φ on ∂Ω\O
uε = Ψ on ∂ωz,ε.

(4.11)

Then there exist a constant c > 0 (independent of ε and g) and ε1 > 0 such that for all
0 < ε < ε1

‖uε‖0,Ωz,ε ≤ c
(
‖ϕ‖−1/2,O + ‖Φ‖1/2,∂Ω\O + ε1/2 ‖Ψ(z + εy)‖1/2,∂ωz,ε

)
.

To prove this result, we split it in two lemmas. First, we prove the following result
inspired by [32, Lemma 7.2] and [30, Lemma 6.3]:

Lemma 4.4. Let ε > 0. For ϕ ∈ H−1/2(O) and Φ ∈ H1/2(∂Ω\O), let (vε, qε) ∈
H1(Ωz,ε)× L2(Ωz,ε) be the solution of the Stokes problem

−ν∆vε +∇qε = 0 in Ωz,ε

div vε = 0 in Ωz,ε

σ(vε, qε)n = ϕ on O

vε = Φ on ∂Ω\O
vε = 0 on ∂ωz,ε.

(4.12)

Then there exist a constant c > 0 (independent of ε and ϕ) and ε1 > 0 such that for all
0 < ε < ε1

‖vε‖1,Ωz,ε ≤ c
(
‖ϕ‖−1/2,O + ‖Φ‖1/2,∂Ω\O

)
.
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Proof. Let ε > 0 and (vε, qε) ∈ H1(Ωz,ε)×L2(Ωz,ε) be the solution of Problem (4.12). Let
(V ε, Qε) ∈ H1(Ωz,ε)× L2(Ωz,ε) be the solution of

−ν∆V ε +∇Qε = 0 in Ωz,ε

divV ε = 0 in Ωz,ε

σ(V ε, Qε)n = 0 on O

V ε = Φ on ∂Ω\O
V ε = 0 on ∂ωz,ε.

(4.13)

Let ṽε and Ṽ ε the respective extensions of vε and V ε to Ω by 0. Then, we have for all
Ψ ∈

{
Ψ ∈ H1(Ωz,ε), div Ψ = 0, Ψ ∂ωz,ε = 0, Ψ ∂Ω\O = 0

}
1

2
ν

∫
Ωz,ε

D(vε − V ε) :D(Ψ) = 〈ϕ , Ψ〉O

and then taking Ψ = vε − V ε

1

2
ν
∥∥∥D(ṽε − Ṽ ε)

∥∥∥2

0,Ω
= 〈ϕ , vε − V ε〉O .

Thus, there exists a constant (independent of ε) such that∥∥∥D(ṽε − Ṽ ε)
∥∥∥2

0,Ω
≤ c ‖ϕ‖−1/2,O

∥∥∥ṽε − Ṽ ε

∥∥∥
1,Ω

.

Moreover, since vε − V ε = 0 on ∂Ω\O, Korn’s inequality (see for example [40, eq. (2.14)
page 19]) leads ∥∥∥ṽε − Ṽ ε

∥∥∥
1,Ω
≤ c

∥∥∥D(ṽε − Ṽ ε)
∥∥∥

0,Ω

(with a constant c independent of ε). Hence,

‖vε − V ε‖21,Ωz,ε =
∥∥∥ṽε − Ṽ ε

∥∥∥2

1,Ω
≤ c ‖ϕ‖−1/2,O

∥∥∥D(ṽε − Ṽ ε)
∥∥∥

0,Ω

≤ c ‖ϕ‖−1/2,O

∥∥∥ṽε − Ṽ ε

∥∥∥
1,Ω
≤ c ‖ϕ‖−1/2,O ‖vε − V ε‖1,Ωz,ε .

Thus,
‖vε − V ε‖1,Ωz,ε ≤ c ‖ϕ‖−1/2,O .

Now, let us prove that ‖V ε‖1,Ωz,ε ≤ c ‖Φ‖1/2,∂Ω\O. For a fixed ε0 > 0, Problem (4.13)
is well-posed and admits a unique solution (V ε0 , Qε0) ∈ H1(Ωz,ε0) × L2(Ωz,ε0) and there
exists c > 0 such that

‖V ε0‖1,Ωz,ε0 ≤ c ‖Φ‖1/2,∂Ω\O .

Let 0 < ε1 < ε0 such that Ωz,ε0 ⊂ Ωz,ε for all 0 < ε < ε1. Let Ṽ ε0 the extension of V ε0

to Ω by 0. The solution V ε of (4.13) can be considered as the solution of the following
minimization problem: min

V ∈U

{
ν |V |1,Ωz,ε

}
, where

U :=
{
V ∈ H1(Ωz,ε), divV = 0 in Ωz,ε, V = 0 on ∂ωz,ε, V = Φ on ∂Ω\O

}
.

Hence, for all 0 < ε < ε1, we have

|V ε|1,Ωz,ε ≤ c
∣∣∣Ṽ ε0

∣∣∣
1,Ωz,ε

= c |V ε0 |1,Ωz,ε0 ≤ c ‖V ε0‖1,Ωz,ε0 ≤ c ‖Φ‖1/2,∂Ω\O .
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Notice that ‖V 0‖1,Ω ≤ c ‖Φ‖1/2,∂Ω\O. Hence, using Poincaré’s inequality,

‖V ε‖0,Ωz,ε =
∥∥∥Ṽ ε

∥∥∥
0,Ω
≤
∥∥∥Ṽ ε − V0

∥∥∥
0,Ω

+ ‖V 0‖0,Ω ≤ c
∣∣∣Ṽ ε − V0

∣∣∣
1,Ω

+ ‖V 0‖0,Ω

≤ c
∣∣∣Ṽ ε

∣∣∣
1,Ω

+ c ‖V 0‖1,Ω ≤ c |V ε|1,Ωz,ε + c ‖V 0‖1,Ω ≤ c ‖Φ‖1/2,∂Ω\O .

Hence, we have the announced result.

Next we prove the following lemma which is an adaptation of [32, Lemma 7.3]:

Lemma 4.5. Let ε > 0. For Ψ ∈ H1(Ω) such that div Ψ = 0 in Ω, let (uε, pε) ∈
H1(Ωz,ε)× L2(Ωz,ε) be the solution of the Stokes boundary value problem

−ν∆uε +∇pε = 0 in Ωz,ε

divuε = 0 in Ωz,ε

σ(uε, pε)n = 0 on O

uε = 0 on ∂Ω\O
uε = Ψ on ∂ωz,ε.

Then there exist a constant c > 0 (independent of ε and g) and ε1 > 0 such that for all
0 < ε < ε1,

‖uε‖0,ΩzR ≤ c ε ‖Ψ(z + εy)‖1/2,∂Ω , |uε|1,ΩzR ≤ c ε ‖Ψ(z + εy)‖1/2,∂Ω ,

‖uε‖0,Dzε ≤ c ε ‖Ψ(z + εy)‖1/2,∂Ω and |uε|1,Dzε ≤ c ε1/2 ‖Ψ(z + εy)‖1/2,∂Ω .

Proof. Let (V ε, Qε) ∈W1,2
0 (R3\ω)×L2(R3\ω) the solution of the exterior Stokes problem

−ν∆V ε +∇Qε = 0 in R3\ω
divV ε = 0 in R3\ω

V ε = 1
εΨ(z + εy) on ∂ω.

We define vε := εV ε

(
x−z
ε

)
and qε := Qε

(
x−z
ε

)
. Hence (wε := vε−uε, sε := qε−pε) solves

−ν∆wε +∇sε = 0 in Ωz,ε

divwε = 0 in Ωz,ε

σ(wε, sε)n = σ(vε, qε)n on O

wε = vε on ∂Ω\O
wε = 0 on ∂ωz,ε.

By Lemma 4.4, there exists a constant c > 0 and ε1 > 0 such that for all 0 < ε < ε1

‖wε‖1,Ωz,ε ≤ c
(
‖σ(vε, qε)n‖−1/2,O + ‖vε‖1/2,∂Ω\O

)
. (4.14)

We also have
‖vε‖1/2,∂Ω\O ≤ ‖vε‖1/2,∂Ω ≤ ‖vε‖1,ΩzR . (4.15)

Moreover,
‖σ(vε, qε)n‖−1/2,O ≤ ‖vε‖1,ΩzR . (4.16)

Indeed, for all ϕ ∈ H1/2(O) and all Φ ∈ H1(Ωz
R) extension of ϕ such that Φ ∂Ω\O = 0

and Φ ∂(B(0,R)) = 0, we have

〈σ(vε, qε)n , ϕ〉−1/2,1/2,O = ν

∫
ΩzR

D(vε) :∇(Φ) ≤ c ‖D(vε)‖0,ΩzR ‖Φ‖1,ΩzR
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and, choosing Φ such that ‖Φ‖1,ΩzR = ‖ϕ‖1/2,O, we obtain that

‖σ(vε, qε)n‖−1/2,O ≤ c ‖D(vε)‖0,ΩzR .

Finally, using the change of variables x = z + εy (see (4.3) and (4.4)) and Lemma 4.2, we
obtain

‖vε‖0,ΩzR ≤ ε3/2 ‖εV ε‖
0,

Ω0
R
ε

≤ cε ‖Ψ(z + εy)‖1/2,∂ω
|vε|1,ΩzR ≤ ε1/2 |εV ε|

1,
Ω0
R
ε

≤ cε ‖Ψ(z + εy)‖1/2,∂ω .
(4.17)

Hence, gathering inequalities (4.14), (4.15), (4.16) and (4.17),

‖wε‖1,Ωz,ε ≤ cε ‖Ψ(z + εy)‖1/2,∂ω .

Proceeding as above (using the change of variables x = z+εy and Lemma 4.2), we also
have

‖vε‖0,Dzε ≤ cε ‖Ψ(z + εy)‖1/2,∂ω and |vε|1,Dzε ≤ cε
1/2 ‖Ψ(z + εy)‖1/2,∂ω .

Therefore, we have

|uε|1,ΩzR ≤ |vε|1,ΩzR + |wε|1,ΩzR ≤ cε ‖Ψ(z + εy)‖1/2,∂ω
‖uε‖0,ΩzR ≤ ‖vε‖0,ΩzR + ‖wε‖0,ΩzR ≤ cε ‖Ψ(z + εy)‖1/2,∂ω ,

and similarly

‖uε‖0,Dzε ≤ cε ‖Ψ(z + εy)‖1/2,∂ω and |uε|1,Dzε ≤ cε
1/2 ‖Ψ(z + εy)‖1/2,∂ω .

Proof of Lemma 4.3. Lemma 4.3 is a direct consequence of the two previous results split-
ting Problem (4.11) into the two problems intervening in Lemmas 4.4 and 4.5.

4.3 Proof of Proposition 4.1

In order to simplify the notations, let us define

rεN (x) := uεN (x)− u0
N (x)−UN

(
x− z
ε

)
and sεN (x) := pεN (x)− p0

N (x)− 1

ε
PN

(
x− z
ε

)
,

where (UN , PN ) ∈ W1,2
0 (R3\ω) × L2(R3\ω) solves (4.1) with \ = N . Then the pair

(rεN , s
ε
N ) ∈ H1(Ωz,ε)× L2(Ωz,ε) solves

−ν∆rεN +∇sεN = 0 in Ωz,ε

div rεN = 0 in Ωz,ε

σ(rεN , s
ε
N )n = −1

εσ(UN , PN )
(
x−z
ε

)
n on O

rεN = −UN

(
x−z
ε

)
on ∂Ω\O

rεN = −u0
N (x) + u0

N (z) on ∂ωz,ε.

Then we know by Lemma 4.3 that there exists a constant c > 0 independent of ε such that

‖rεN‖1,Ωz,ε ≤ c

(
1

ε

∥∥∥∥σ(UN , PN )

(
x− z
ε

)
n

∥∥∥∥
−1/2,O

+

∥∥∥∥UN

(
x− z
ε

)∥∥∥∥
1/2,∂Ω\O

+ ε1/2
∥∥−u0

N (z + εy) + u0
N (z)

∥∥
1/2,∂ω

)
. (4.18)
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Mimicking the proof of (4.16), we have∥∥∥∥σ(UN , PN )

(
x− z
ε

)
n

∥∥∥∥
−1/2,O

≤ c
∥∥∥∥(∇UN )

(
x− z
ε

)∥∥∥∥
0,ΩzR

.

Using the change of variables y = x− z, we obtain∥∥∥∥σ(UN , PN )

(
x− z
ε

)
n

∥∥∥∥
−1/2,O

≤ c
∥∥∥(∇UN )

(y
ε

)∥∥∥
0,Ω0

R

= c ε
∥∥∥∇(UN

(y
ε

))∥∥∥
0,Ω0

R

.

Then, using the change of variables y = εx (see (4.4)),∥∥∥∥σ(UN , PN )

(
x− z
ε

)
n

∥∥∥∥
−1/2,O

≤ c ε5/2 ‖∇UN‖
0,

Ω0
R
ε

.

Thus, Lemma 4.2 gives∥∥∥∥σ(UN , PN )

(
x− z
ε

)
n

∥∥∥∥
−1/2,O

≤ c ε3
∥∥u0

N (z)
∥∥

1/2,∂ω
≤ c ε3. (4.19)

Proceeding as for
∥∥σ(UN , PN )

(
x−z
ε

)
n
∥∥
−1/2,O

, we have, using the change of vari-
ables y = x−z

ε (see (4.3) and (4.4)),∥∥∥∥UN

(
x− z
ε

)∥∥∥∥
1/2,∂Ω\O

≤ c

(∥∥∥∥UN

(
x− z
ε

)∥∥∥∥
0,ΩzR

+

∥∥∥∥∇ (UN )

(
x− z
ε

)∥∥∥∥
0,ΩzR

)

≤ c

(
ε3/2 ‖UN (x)‖

0,
Ω0
R
ε

+ ε5/2 ‖∇UN‖
0,

Ω0
R
ε

)
.

Thus, according to Lemma 4.2, we obtain∥∥∥∥UN

(
x− z
ε

)∥∥∥∥
1/2,∂Ω\O

≤ c ε
∥∥u0

N (z)
∥∥

1/2,∂ω
≤ c ε. (4.20)

Using a Taylor expansion, we obtain u0
N (z+ εy) = u0

N (z) + ε∇u0
N (ξy)y with ξy ∈ ωz,ε.

Since ∇u0
N is uniformly bounded in ωz,ε, we have∥∥u0

N (z + εy)− u0
N (z)

∥∥
1/2,∂ω

≤ c ε. (4.21)

Hence, relations (4.18), (4.19), (4.20) and (4.21) implies∥∥∥∥uεN (x)− u0
N (x)−UN

(
x− z
ε

)∥∥∥∥
1,Ωz,ε

≤ c ε.

5 Proof of Theorem 3.1

5.1 A preliminary lemma

First we need an estimate of the norm ‖·‖1/2,∂ωz,ε of an uniformly bounded function. Here
‖·‖1/2,∂ωz,ε has to be seen as the trace norm

‖f‖1/2,∂ωz,ε := inf
{
‖u‖H1(Ω\ωz,ε) , u ∈ H1(Ω\ωz,ε),u ∂ωz,ε = f

}
.
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Lemma 5.1. Let ε ∈ (0, 1/2). If u ∈ H1(Ω) is such that its restriction to ωz,1 is C1, then
there exists a constant c > 0 independent of ε such that

‖u‖1/2,∂ωz,ε ≤ cε
1/2.

Proof. From Theorem C.1, there exists a constant c > 0 independent of ε such that

‖u‖1/2,∂ωz,ε ≤ cε
−1/2 ‖u‖L2(∂ωz,ε)

+ c

(∫ ∫
∂ωz,ε×∂ωz,ε

|u(x)− u(y)|2

|x− y|3
ds(x)ds(y)

)1/2

.

Since u is uniformly bounded on ∂ωz,ε, we use the change of variables y = z+ εx to prove
that there exists a constant c > 0 independent of ε such that

‖u‖L2(∂ωz,ε)
≤ cε.

Moreover, using the changes of variables x = z + εX and y = z + εY , the fact that
u(z + εX) = u(z) + ε∇(u)(ξX)X, ξX ∈ ωz,ε and u(z + εY ) = u(z) + ε∇(u)(ξY )Y ,
ξY ∈ ωz,ε, there exists c > 0 independent of ε such that(∫ ∫

∂ωz,ε×∂ωz,ε

|u(x)− u(y)|2

|x− y|3
ds(x)ds(y)

)1/2

=

(∫ ∫
∂ω×∂ω

ε4 |ε (∇(u)(ξX)X −∇(u)(ξY )Y )|2

ε3 |X − Y |3
ds(x)ds(y)

)1/2

≤ cε3/2.

5.2 Splitting the variations of the objective

Now, we turn our attention to the Kohn-Vogelius functional given by

JKV (Ωz,ε) =
1

2
ν

∫
Ωz,ε

|D(uεD)−D(uεN )|2.

Lemma 5.2. We have

JKV (Ωz,ε)− JKV (Ω) = AD +AN , (5.1)

where

AD :=
1

2
ν

∫
Ωz,ε

D(uεD − u0
D) :D(uεD − u0

D)

+ ν

∫
Ωz,ε

D(uεD − u0
D) :D(u0

D)− 1

2
ν

∫
ωz,ε

|D(u0
D)|2

and
AN :=

∫
∂ωz,ε

[
σ(uεN − u0

N , p
ε
N − p0

N )n
]
· u0

N −
1

2
ν

∫
ωz,ε

|D(u0
N )|2.

Proof. The functional JKV can be expanded in

JKV (Ωz,ε) = JDD(Ωz,ε)︸ ︷︷ ︸
:=

1

2
ν

∫
Ωz,ε

|D(uεD)|2

+ JDN (Ωz,ε)︸ ︷︷ ︸
:= −ν

∫
Ωz,ε

D(uεD) :D(uεN )

+ JNN (Ωz,ε)︸ ︷︷ ︸
:=

1

2
ν

∫
Ωz,ε

|D(uεN )|2

.
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Variation of JDD. We have

JDD(Ωz,ε)− JDD(Ω) =
1

2
ν

∫
Ωz,ε

|D(uεD)|2 − 1

2
ν

∫
Ω
|D(u0

D)|2

=
1

2
ν

∫
Ωz,ε

D(uεD − u0
D) :D(uεD − u0

D)

+ν

∫
Ωz,ε

D(uεD − u0
D) :D(u0

D)− 1

2
ν

∫
ωz,ε

|D(u0
D)|2. (5.2)

Variation of JDN . We have, using Green’s formula on (2.4) and (4.2),

JDN (Ωz,ε)− JDN (Ω) = −ν
∫

Ωz,ε

D(uεN ) :D(uεD) + ν

∫
Ω
D(u0

N ) :D(u0
D)

= 2

∫
∂Ω

[
σ(u0

N − uεN , p0
N − pεN )n

]
· f . (5.3)

Variation of JNN . We have

JNN (Ωz,ε)− JNN (Ω) =
1

2
ν

∫
Ωz,ε

|D(uεN )|2 − 1

2
ν

∫
Ω
|D(u0

N )|2

=
1

2
ν

∫
Ωz,ε

D(uεN − u0
N ) :D(uεN ) +

1

2
ν

∫
Ωz,ε

D(uεN − u0
N ) :D(u0

N )

−1

2
ν

∫
ωz,ε

|D(u0
N )|2.

Then, using Green’s formula and (4.2) in the two first integrals, we obtain

JNN (Ωz,ε)− JNN (Ω) =

∫
∂Ω

[
σ(uεN − u0

N , p
ε
N − p0

N )n
]
· uεN

+

∫
∂Ω

[
σ(uεN − u0

N , p
ε
N − p0

N )n
]
· u0

N +

∫
∂ωz,ε

[
σ(uεN − u0

N , p
ε
N − p0

N )n
]
· u0

N

− 1

2
ν

∫
ωz,ε

|D(u0
N )|2. (5.4)

Variation of JKV . In order to obtain the variation JKV , we will sum the variations of
JDD, JDN and JNN . First, we remark that f −u0

N and f −uεN belong to H
1/2
00 (O) since

they belong to H1/2(∂Ω) and vanish on ∂Ω\O. Then

2

∫
∂Ω

[
σ(uεN − u0

N , p
ε
N − p0

N )n
]
· f

−
∫
∂Ω

[
σ(uεN − u0

N , p
ε
N − p0

N )n
]
· u0

N −
∫
∂ωz,ε

[
σ(uεN − u0

N , p
ε
N − p0

N )n
]
· uεN

=

∫
∂Ω

[
σ(uεN − u0

N , p
ε
N − p0

N )n
]
· (f − u0

N ) +

∫
∂Ω

[
σ(uεN − u0

N , p
ε
N − p0

N )n
]
· (f − uεN )

=
〈
σ(uεN − u0

N , p
ε
N − p0

N )n , f − u0
N

〉
O

+
〈
σ(uεN − u0

N , p
ε
N − p0

N )n , f − uεN
〉
O

+

∫
∂Ω\O

[
σ(uεN − u0

N , p
ε
N − p0

N )n
]
· (f − u0

N ) +

∫
∂Ω\O

[
σ(uεN − u0

N , p
ε
N − p0

N )n
]
· (f − uεN ).

Since σ(uεN , p
ε
N )n = σ(u0

N , p
0
N )n = g on O and u0

N = uεN = f on ∂Ω\O, we prove that
this expression is null. Finally, we obtain the expansion (5.1) using the variations of JDD,
JDN and JNN (see (5.2), (5.3) and (5.4)).
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5.3 Asymptotic expansion of AN

We know using elliptic regularity that ∇u0
N is uniformly bounded on ωz,ε. Thus

− 1

2
ν

∫
ωz,ε

|D(u0
N )|2 ≤ c

∫
ω
ε3 = O(ε3). (5.5)

Let us recall that

rεN (x) := uεN (x)− u0
N (x)−UN

(
x− z
ε

)
and sεN (x) := pεN (x)− p0

N (x)− 1

ε
PN

(
x− z
ε

)
,

where (UN , PN ) ∈ W1,2
0 (R3\ω) × L2(R3\ω) solves (4.1) with \ = N . Then the following

equality holds∫
∂ωz,ε

[
σ(uεN − u0

N , p
ε
N − p0

N )n
]
· u0

N =∫
∂ωz,ε

[σ(rεN , s
ε
N )n] · u0

N +
1

ε

∫
∂ωz,ε

[
σ(UN , PN )

(
x− z
ε

)
n

]
· u0

N . (5.6)

Let us first focus on the first term in the right-hand side of (5.6). We recall that for all
ϕ ∈ H1/2(∂ωz,ε) and all Φ ∈ H1(Ωz,ε) extension of ϕ such that Φ ∂Ω = 0, we have

〈σ(rεN , s
ε
N )n , ϕ〉−1/2,1/2,∂ωz,ε

=
1

2
ν

∫
Ωz,ε

D(rεN ) :D(Φ) ≤ c ‖D(rεN )‖0,Ωz,ε ‖Φ‖1,Ωz,ε .

Hence, choosing Φ such that ‖Φ‖1,Ωz,ε = ‖ϕ‖1,∂Ωz,ε
, we obtain that

‖σ(rεN , s
ε
N )n‖−1/2,∂ωz,ε

≤ c ‖D(rεN )‖0,Ωz,ε . (5.7)

Therefore, using the explicit upper bound of
∥∥u0

N

∥∥
1/2,∂ωz,ε

given by Lemma 5.1, we have∣∣∣∣∣
∫
∂ωz,ε

[σ(rεN , s
ε
N )n] · u0

N

∣∣∣∣∣ ≤ ‖σ(rεN , s
ε
N )n‖−1/2,∂ωz,ε

∥∥u0
N

∥∥
1/2,∂ωz,ε

≤ c ε1/2 ‖rεN‖1,Ωz,ε .

Then, using the explicit upper bound of ‖rεN‖1,Ωz,ε given by Proposition 4.1, we obtain∣∣∣∣∣
∫
∂ωz,ε

[σ(rεN , s
ε
N )n] · u0

N

∣∣∣∣∣ ≤ c ε3/2 = O(ε3/2). (5.8)

Let us now focus on the second term in the right-hand side of (5.6). Using the change of
variables x = z + ε y, we have∫
∂ωz,ε

[
[σ(UN , PN )]

(
x− z
ε

)
n

]
· u0

N ds(x) = ε2

∫
∂ω

[σ(UN , PN )(y)n] · u0
N (z + εy) ds(y).

Since u0
N (z+εy) = u0

N (z)+ε∇(u0
N )(ξy)y, ξy ∈ ωz,ε and since D(u0

N ) is uniformly bounded
in ωz,ε, we have

ε2

∫
∂ω

[σ(UN , PN )(y)n] · u0
N (z + εy) = ε2

(∫
∂ω
σ(UN , PN )(y)n

)
· u0

N (z) +O(ε3).
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Taking into account that n is oriented inside ω, we use the jump condition of the single
layer potential (see [35, Lemma 5.6.5]) to obtain that

−σ(UN , PN )n + σ(WN , QN )n = −ηN ,

where ηN ∈ H−1/2(∂ω)/Rn is defined by (3.2) and (WN , QN ) ∈ H1(ω)× L2(ω) solves
−ν∆WN +∇QN = 0 in ω

divWN = 0 in ω
WN = UN on ∂ω.

Since −div σ(WN , QN ) = −ν∆WN +∇QN = 0 in ω, we have
∫
∂ω
σ(WN , QN )n = 0 and

∫
∂ωz,ε

[
[σ(UN , PN )]

(
x− z
ε

)
n

]
· u0

N = ε2

(∫
∂ω
ηN

)
· u0

N (z) +O(ε3). (5.9)

Gathering (5.5), (5.8) and (5.9), we obtain

AN = ε

(∫
∂ω
ηN

)
u0
N (z) + o(ε). (5.10)

5.4 Asymptotic expansion of AD

We recall that

AD =
1

2
ν

∫
Ωz,ε

D(uεD−u0
D) :D(uεD−u0

D)+ν

∫
Ωz,ε

D(uεD−u0
D) :D(u0

D)− 1

2
ν

∫
ωz,ε

|D(u0
D)|2.

Proceeding as in the previous section 5.3, we prove that

−1

2
ν

∫
ωz,ε

|D(u0
D)|2 = o(ε).

Moreover, using Green’s formula, we have

ν

∫
Ωz,ε

D(uεD − u0
D) :D(u0

D) = 2

∫
∂ωz,ε

(
σ(u0

D, p
0
D)n

)
·
(
uεD − u0

D

)
= −2

∫
∂ωz,ε

(
σ(u0

D, p
0
D)n

)
· u0

D = −ν
∫
ωz,ε

|D(u0
D)|2 = o(ε).

Now, let us study
1

2
ν

∫
Ωz,ε

D(uεD − u0
D) :D(uεD − u0

D). We define

rεD(x) := uεD(x)− u0
D(x)−UD

(
x− z
ε

)
and sεD(x) := pεD(x)− p0

D(x)− 1

ε
PD

(
x− z
ε

)
,

where (UD, PD) ∈W1,2
0 (R3\ω)×L2(R3\ω) solves (4.1) with \ = D. Using Green’s formula

ν

∫
Ωz,ε

∣∣D(uεD − u0
D)
∣∣2 = 2

∫
∂ωz,ε

[
σ(uεD − u0

D, p
ε
D − p0

D)n
]
·
(
uεD − u0

D

)
= −2

∫
∂ωz,ε

[σ(rεD, s
ε
D)n] · u0

D −
2

ε

∫
∂ωz,ε

[
σ(UD, PD)

(
x− z
ε

)
n

]
· u0

D.
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Proceeding as in the previous section 5.3 (see inequality (5.8)), we use an inequality similar
to (5.7), the asymptotic expansion of uεD given by Proposition 4.1 and Lemma 5.1 to obtain∣∣∣∣∣

∫
∂ωz,ε

[σ(rεD, s
ε
D)n] · u0

D

∣∣∣∣∣ ≤ c ε1/2 ‖rεD‖1,Ωz,ε = O(ε3/2).

Moreover, using the change of variables x = z + εy, we have∫
∂ωz,ε

[
σ(UD, PD)

(
x− z
ε

)
n

]
· u0

D = ε2

∫
∂ω

[σ(UD, PD) (y) n] · u0
D(z + εy).

Since u0
D(z + εy) = u0

D(z) + ε∇u0
D(ξy)y, ξy ∈ ωz,ε and since ∇u0

D is uniformly bounded
in ωz,ε, we have

ε2

∫
∂ω

[σ(UD, PD) (y) n] · u0
D(z + εy)ds(y) = ε2

(∫
∂ω
σ(UD, PD) (y) n

)
u0
D(z) +O(ε3).

Taking into account that n is oriented inside ω, we use the jump condition of the single
layer potential (see [35, Lemma 5.6.5]) to obtain that

−σ(UD, PD) + σ(WD, QD) = −ηD,

where ηD ∈ H−1/2(∂ω)/Rn is defined by (3.2) and (WD, QD) ∈ H1(ω)× L2(ω) solves
−ν∆WD +∇QD = 0 in ω

divWD = 0 in ω
WD = UD on ∂ω.

Since div σ(WD, QD) = −ν∆WD +∇QD = 0 in ω, we have
∫
∂ω
σ(WD, QD)n = 0 and

∫
∂ωz,ε

[
σ(UD, PD)

(
x− z
ε

)
n

]
· u0

D = ε2

(∫
∂ω
ηD

)
u0
D(z) +O(ε3).

Hence, we obtain

ν

∫
Ωz,ε

∣∣D(uεD − u0
D)
∣∣2 = −2ε

(∫
∂ω
ηD

)
u0
D(z) + o(ε).

Therefore
AD = −ε

(∫
∂ω
ηD

)
u0
D(z) + o(ε). (5.11)

5.5 Conclusion of the proof: asymptotic expansion of JKN
Using (5.1), (5.10) and (5.11), we conclude the proof of Theorem 3.1:

JKV (Ωz,ε)− JKV (Ω) = −ε
(∫

∂ω
ηD

)
u0
D(z) + ε

(∫
∂ω
ηN

)
u0
N (z) + o(ε).
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6 Numerical Simulations

6.1 Framework of the numerical simulations

The use of the topological derivative aims to give us the number of inclusions and their
rough location. Then it can provide initial shapes for an optimization method based on the
boundary variation method for which we have to know the number of connected objects
we have to reconstruct.

To make the numerical simulations presented here, we use a P1b-P1 finite elements
discretization to solve the Stokes equations (2.3) and (2.4). The framework is the fol-
lowing: the exterior boundary is assumed to be the parallelepiped rectangle [−0.5, 0.5] ×
[−0.25, 0.25] × [−0.25, 0.25]. In order to be physically relevant, we have to confirm the
validity of the Stokes approximation, we consider cases with low Reynolds number Re: in
our simulations, we consider 0, 05 ≤ Re ≤ 0.1.

Remark 6.1. If we consider, as a mathematical problem, the Stokes equations for any
Reynolds number, we should notice that the results do not depends on the kinematic viscosity
ν since the topological derivative of JKV depends only on the velocity and not on the
pressure.

Except when mentioned, the measurement is assumed to be made on all the faces except
on the one given by x = −0.5. We consider the exterior Dirichlet boundary condition

f :=

 −(x2 + xy + 4 cos(3x) + 8y + 2xz + sin(z2))
−(−1

2y
2 − 2xy + x2 + 12y sin(3x) + y cos(3z) + z3)

−(x2 + xy + y3 − z2 − 1
3 sin(3z) + cos(xy))

 .

In order to have a suitable pair (measure g, domain ω∗), we use a synthetic data: we
fix a shape ω∗ (more precisely a finite number of obstacles ω∗1, . . . , ω∗m), solve the Stokes
problem (2.3) in Ω\ω∗ using another finite elements method (here a P2-P1 finite elements
discretization) and extract the measurement g by computing σ(u, p)n on O.

In the practical simulations that we present, we add spherical objects. Indeed, in
this very particular case, we have an explicit formula for the topological gradient (see
Corollary 3.2). In order to determine the radius of these spheres, we use a thresholding
method. For an iteration k, it consists in determining the minimum argument P ∗ of
the topological gradient δJKV in Ω\

(⋃k
j=1 ωj

)
and in defining the set P of the points

P ∈ Ω\
(⋃k

j=1 ωj

)
such that

δJKV (P ) = δJKV (P ∗) + 0.25 ∗ |δJKV (P ∗)| .

Then we fix a minimum radius rmin := 0.01 and we define the radius of the kth sphere by

rk := max

(
rmin, min

P∈P
(|xP − xP ∗ | , |yP − yP ∗ | , |zP − zP ∗ |)

)
. (6.1)

We use the classical topological gradient algorithm (see for example [23], [30], [32], [11])
that we recall here for reader’s convenience:

Algorithm
1. fix an initial shape ω0 = ∅, a maximum number of iterations M and set i = 1 and

k = 0,
2. solve Problems (2.3) and (2.4) in Ω\

(⋃k
j=0 ωj

)
,
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3. compute the topological gradient δJKV using Formula (3.3), i.e.

δJKV (P ) = 6πν
(∣∣u0

N (z)
∣∣2 − ∣∣u0

D(z)
∣∣) ∀P ∈ Ω\

 k⋃
j=0

ωj

 ,

4. seek P ∗k+1 := argmin
(
δJKV (P ), P ∈ Ω\

(⋃k
j=0 ωj

))
,

5. if
∥∥P ∗k+1 − Pj0

∥∥ < rk+1 + rj0 + 0.01 for j0 ∈ {1, . . . , k}, where rj0 is the radius of ωj0
and rk+1 is defined by (6.1), then rj0 = 1.1 ∗ rj0 , get back to the step 2. and i← i+ 1
while i ≤M ,

6. set ωk+1 = B(P ∗k+1, rk+1), where rk+1 is defined by (6.1),
7. while i ≤M , get back to the step 2, i← i+ 1 and k ← k + 1.

Remark 6.2. In order to find P ∗k+1 in the fourth step of the algorithm, we first find the

minimum of δJKV in Ω \
(
∪kj=0ωj

)
. Then, we find the triangle where this minimum is

achieved by scanning the whole mesh.

We add to this algorithm a stop test (in addition of the maximum number of iterations).
In every iteration, we compute the functional JKV . This non-negative functional has to
decrease at each iteration. Thus, we stop our implementation when it is not the case, i.e.
when JKV

(
Ω\
(⋃k+1

j=0 ωj

))
> JKV

(
Ω\
(⋃k

j=0 ωj

))
.

Notice that with this algorithm, we add only one object at each iteration. This method
can be slower than the one proposed by Carpio et al. in [21]: by seeking local minima of
δJKV and not a global minimum, they can add several objects simultaneously. However,
in our case, it seems to be more appropriate because otherwise objects can be added
wrongly. Moreover, notice that step 5 comes to the assumption that the objects are well
separated.Finally, since we assumed that the obstacles are far away from the exterior
boundary, we have to take away the added objects on it. Then, if the minimum of the
topological gradient is on the exterior boundary, we push the added inclusion inside with
a depth 0.005.

Concerning the mesh, we impose a fixed number of discretization points for the exterior
boundary ∂Ω, that is 20 points for [−1, 1] and 10 points for [−0.5, 0.5] (in order to have a
uniform mesh). Concerning the added objects, we fix the characteristic size of a cell, that
is r

2 , where r is the radius of the sphere, in order to have approximatively 100 triangles to
mesh the surface of each added sphere.

6.2 First simulations

First we want to detect three spheres ω∗1, ω∗2 and ω∗3 centered respectively in (0.425, 0, 0.225),
(−0.430,−0.225, 0.1) and (−0.15, 0.222,−0.222) (i.e. near from the exterior boundary)
with shared radius r∗ = 0.013. The detection is quite efficient (see Figure 3). Indeed we
detect three objects with shared radius r = 0.01 that we summarized in Table 1 Here, we

Table 1: Detection of ω∗1, ω∗2 and ω∗3

actual objects (0.425,0,0.225) (-0.430,-0.225,0.1) (-0.15,0.222,-0.222)
approximate objects (0.435,0,0.235) (-0.430,-0.235,0.102) (-0.149,0.235,-0.235)

stop the algorithm because of the functional increases as we can see in Figure 4.
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Figure 3: Detection of ω∗1, ω∗2 and ω∗3

Figure 4: Evolution of the functional JKV during the detection of ω∗1, ω∗2 and ω∗3

In this first simulation, the objects are very far away from each other. But what happens
when the obstacles are closed from each other? Figure 5 shows that the detection of closed

Figure 5: Detection of ω∗4, ω∗5 and ω∗6

objects is quite efficient too. Indeed, we want to detect three spheres ω∗4, ω∗5 and ω∗6
centered respectively in (0, 0.237,−0.237), (0.04, 0.237,−0.237) and (0.08, 0.237,−0.237)
with shared radius r∗ = 0.01. We obtain three spheres with shared radius r = 0.01 as
summarized in Table 2

Now the question we asked is: can we detect other shapes than spheres? Thus, we want
to detect objects with different shapes: a sphere ω∗7 centered in (0.2,−0.237, 0.237) with
radius r∗ = 0.01 and a cube ω∗8 given by [0.08, 0.1] × [0.227, 0.247] × [−0.247,−0.227].
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Table 2: Detection of ω∗4, ω∗5 and ω∗6

actual objects (0,0.237,-0.237) (0.04,0.237,-0.237) (0.08,0.237,-0.237)
approximate objects (0.0088,0.235,-0.235) (0.044,0.235,-0.235) (0.079,0.235,-0.235)

We obtain Figure 6: a sphere centered in (0.096, 0.235,−0.235) and one centered in

Figure 6: Detection of ω∗7 and ω∗8

(0.202,−0.235, 0.235) with shared radius r = 0.01. Here again, we stop our algorithm
because of the functional increases.

In conclusion of these first simulations, as we expected, this method permits to give
us the number of objects we have to determine and their rough location. Moreover, it is
efficient for different types of shapes, including shapes with corners.

6.3 Influence of the distance to the location of measurements

Now, we want to now how far we can detect an inclusion by try to recover a sphere increas-
ingly pushed away from the boundary: precisely, the sphere with radius r∗ = 0.01 centered
in (0, y∗, 0.1) with y∗ = 0.232, 0.225, 0.2, 0.1, 0. In the three first tests, the inclusion is
approximatively detected. However, the method fails when y∗ = 0.1 and y∗ = 0: the
functional increases when we add the first object (which means that we add it wrongly).

In order to be more precise, let us define d the distance between the object and the
exterior boundary given by y = 0.25 (i.e. d = 0.25 − y∗ + r∗). Let us define the non-
dimensional distance η := d

2r∗ . We want to study the error between P ∗ := (x∗, y∗, z∗) and
P (η) := (x(η), y(η), z(η)) which are the respective coordinates of the center of the real
object and its approximation. Then, we define the two following errors

Err1(η) :=
‖P ∗ − P (η)‖

d
and Err2(η) :=

‖P ∗ − P (η)‖
2r∗

,

where ‖·‖ represents the Euclidean norm. Notice that Err1 is the classical relative error.
In Figure 7, we represent Err1 and Err2 versus the non-dimensional distance η. The result
obtained is similar to the one obtained by Ben Abda et al. in [14, Fig. 4.2.(b)] and shows
that the error dramatically increases when the object is far away of the exterior boundary.

Finally, Figure 8 shows that the more the obstacle is far away from the exterior bound-
ary, the more the initial value of the functional JKV is small and the initial value of the
minimum of the topological gradient δJKV (P ∗1 ) is big: they seem to tend to 0. This
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Figure 7: The Euclidean norm of the error between the exact and the approximate coor-
dinates versus the non-dimensional distance η

Figure 8: The initial Kohn-Vogelius functional and minimum of the topological gradient
versus the distance of the obstacle from the exterior boundary d

means that the sensitivity of the functional and its topological gradient decreases when the
distance d increases. This explains the encountered difficulties.

Hence, these simulations show that the detection of obstacles far away from the exterior
boundary is difficult. This phenomenon can be explained by the regularizing behavior of
the Stokes equations. We emphasized this difficulty of detection pointing out that the
functional JKV and its topological gradient are less sensitive to the addition of obstacles
when they are far away from the exterior boundary. This lack of sensitivity with respect
to the object far away from the measurements is maybe due to the static (here stationary)
physical context. Indeed, the sensitivity is better in a dynamical or waves context (see [21]).

Remark 6.3. An intuitive solution may be to cumulate several experiments (with different
choices of f) in order to improve the detection. We then sum the topological gradients for
each experiment. However, this manipulation does not lead to efficient results and even
poor results.

6.4 Influence of the size and the shape of the objects

Now, we want to study the influence of the volume of the objects on the efficiency of the
detection. Thus, we want to detect a sphere with radius r∗ = 0.015, 0.02, 0.03, 0.04, 0.05 and
which is, for each test, taken away from the boundary of d = 0.003. The fourth first tests
are efficient and permit to detect the object decreasing the Kohn-Vogelius functional JKV .

23



Moreover, once the object detected, the radius of the sphere increases. We recapitulate
the radius r obtained in each case in Table 3. However, for r = 0.05, the object is badly

Table 3: Radius of the approximate obstacles versus real radius of the object.

r∗ 0.015 0.02 0.03 0.04
r 0.012 0.025 0.035 0.052

positioned as we can see in Figure 9 and the functional increases immediately: the real

Figure 9: Detection of a big obstacle

sphere is centered in (0, 0.197, 0.1) and we obtain a sphere centered in (0.395, 0.235, 0.235).
Then, we want to know the influence of the size of the objects when several objects

have to be to detected. We make the simulations detecting two spheres with radius r1 and
r2 when r1 = 2r2, r1 = 3r2, r1 = 4r2 and r1 = 5r2. The simulations shows that the first
object detected is the biggest sphere (even if we interchange the position of the objects).
However, when an object is too big, we have the same conclusion than above: we add an
obstacle badly positioned and the functional increases.

Finally, we wonder if the shape of the objects has an influence on the detection.
We have seen in Section 6.2 that cubes can be detected. Are cubes more difficult or
easier to detect than spheres? In the simulation represented in Figure 6, the first ob-
stacle detected is the cube. Note that this is unchanged by interchanging the position
of the objects. Then, we want to detect a big sphere and a small cube: the sphere
ω∗9 centered in (0.05,−0.222, 0.222) with radius r∗ = 0.025 and the cube ω∗10 given by
[0.08, 0.1]× [0.227, 0.247]× [−0.247,−0.227]. Notice that they are equally far away of the
boundary. The results are presented in Figure 10. The first object detected is again the
cube, even if it is the smaller. Finally, when we have to detect a big cube and a small
sphere, the simulations shows that only the cube is well-detected.

In conclusion, the volume of the objects seems to have a major importance in the
detection of them. It seems that we can only detect small obstacles. This is reasonable
since the theoretical construction started with that assumption. Moreover, the shape of
the obstacles seems to be important too: domain with geometrical singularities seems to
be more easily imaged also with the topological gradient approach.
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Figure 10: Detection of ω∗9 and ω∗10

6.5 Influence of the size of the domain where measurements are made

At this point, the measurements are made on all the faces of the parallelepiped rectangle
except on the face x = −0.5. Now, we want to study the efficiency of the detection if the
domain of measurement O ⊂ ∂Ω is reduced. To do this, we want to detect the objets ω∗1,
ω∗2 and ω∗3 presented in Section 6.2 (see Figure 3). One can note that here we have to refine
the mesh to obtain efficient results: we use 32 discretization points for [−1, 1] and 16 for
[−0.5, 0.5] and the characterized size of a cell of a sphere of radius r is now r

2.3 .
We have seen that when ∂Ω\O is the face x = −0.5, the three objects are detected.

However, if ∂Ω\O is the faces x = −0.5 and y = −0.25 (i.e. the faces near ω∗2), then
we only detect two objects: one centered in (−0.165, 0.235,−0.235) and one centered in
(0.431, 0.05, 0.235). Hence, we do not detect ω∗2 (see Figure 11 on the left). Moreover, if
∂Ω\O is the faces x = 0.5 and z = 0.25 (i.e. the faces near ω∗1), then we detect only two
objects again: ω∗1 is not located in this case. Finally, if we make the measurement only on
the face y = 0.25, then we only detect an object centered in (−0.159, 0.235,−0.217), i.e
the object ω∗3 which is near this face (see Figure 11 on the right).

Figure 11: Detection of ω∗1, ω∗2 and ω∗3 for different measurement domains

In conclusion, as we expected, it seems that we can only detect objects which are near
from a measurement part of the exterior boundary.
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7 Conclusion

Using a Kohn-Vogelius approach, we have detected the number of potential objects im-
mersed in a fluid and their rough location. We have computed the topological gradient of
the Kohn-Vogelius functional considered using an asymptotic expansion of the solution of
the Stokes equations in the whole domain when we add small obstacles inside. We have
made some numerical attempts adding spherical objects because of an explicit formula of
the topological derivative holds in this very particular case. The simulations have shown
that only small obstacles close to the part of the boundary where we make the measure-
ments can be detected. Once these restrictions are satisfied, the detection is quite efficient,
even for objects with corners. Our intuition to explain these numerical results is the pene-
tration depth of the approach is poor in the stationary case. In the elastic case, this depth
increases in a dynamical (or waves) setting.

Acknowledgments This work is part of the project ANR-09-BLAN-0037 Geometric
analysis of optimal shapes (GAOS) financed by the French Agence Nationale de la Recherche
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A Some results on the Stokes problem with mixed boundary
conditions

We recall classical results about the Stokes problem with mixed boundary conditions: a
theorem of existence and uniqueness of the solution and a local regularity result.

We note C a generic positive constant, only depending on the geometry of the domain
and on the dimension, which may change from line to line.

First, let us introduce some notations: for Ω an open set of RN an open subset ω ⊂⊂ Ω
and a part O of the exterior boundary ∂Ω, we define

V O(Ω\ω) :=
{
u ∈ H1(Ω\ω); divu = 0 in Ω\ω, u = 0 on ∂ω ∪ (∂Ω\O)

}
.

Moreover, we denote respectively by 〈·, ·〉Ω\ω and 〈·, ·〉∂Ω (or 〈·, ·〉∂ω) the duality product
between

[
H1(Ω\ω)

]′ and H1(Ω\ω) and between H−1/2(∂Ω) and H1/2(∂Ω).

Theorem A.1 (Existence and uniqueness of the solution). Let Ω be a bounded Lipschitz
open set of RN (N ∈ N∗) and let ω ⊂⊂ Ω be a Lipschitz open subset of Ω such that Ω\ω is
connected. Let O ⊂ ∂Ω be a part of the exterior boundary and ν > 0. Let f ∈

[
H1(Ω\ω)

]′,
hext ∈ H1/2(∂Ω\O), hO ∈ H−1/2(O) and hint ∈ H1/2(∂ω). Then, the problem

−ν∆u+∇p = f in Ω\ω
divu = 0 in Ω\ω

σ(u, p)n = hO on O

u = hext on ∂Ω\O
u = hint on ∂ω

(A.1)

admits a unique solution (u, p) ∈ H1(Ω\ω)× L2(Ω\ω) and the following estimate holds:

‖u‖H1(Ω\ω) + ‖p‖L2(Ω\ω)

≤ C
(
‖f‖[H1(Ω\ω)]′ + ‖hext‖H1/2(∂Ω\O) + ‖hO‖H−1/2(O) + ‖hint‖H1/2(∂ω)

)
.
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Proof. Step 1: existence and uniqueness. According to [10, Lemma 3.3], let us consider
H ∈ H1(Ω\ω) such that divH = 0 in Ω\ω, H = hint on ∂ω, H = hext on ∂Ω\O such

that
∫
∂Ω∪∂ω

H · n = 0 and satisfying

‖H‖H1(Ω\ω) ≤ C
(
‖hint‖H1/2(∂ω) + ‖hext‖H1/2(∂Ω\O)

)
. (A.2)

Then the couple (U := u−H, p) ∈ H1(Ω\ω)× L2(Ω\ω) satisfies
−ν∆U +∇p = f + ν∆H in Ω\ω

divU = 0 in Ω\ω
σ(U , P )n = hO + ν(∇H + t∇H)n on O

U = 0 on ∂Ω\O
U = 0 on ∂ω.

According to Lax-Milgram’s theorem, there exists a unique U ∈ V O(Ω\ω) such that for
all v ∈ V O(Ω\ω)

ν

∫
Ω\ω
∇U : ∇v = 〈f ,v〉Ω\ω − ν

∫
Ω\ω
∇H :∇v −

〈
hO + ν(∇H + t∇H)n,v

〉
O

(A.3)

and we have, using (A.2),

‖U‖H1(Ω\ω) ≤ C
(
‖f‖[H1(Ω\ω)]

′ + ‖hint‖H1/2(∂ω) + ‖hext‖H1/2(∂Ω\O) + ‖hO‖H−1/2(O)

)
.

(A.4)
In particular (A.3) is true for all v ∈ V O(Ω\ω) ∩ H1

0(Ω\ω). Then using De Rham’s
theorem (see for example [9, Lemma 2.7]), there exists p ∈ L2(Ω\ω), up to an additive
constant, such that for all v ∈ H1

0(Ω\ω)

ν

∫
Ω\ω
∇U : ∇v −

∫
Ω\ω

p div v =
〈
f H1

0(Ω\ω),v
〉
H−1(Ω\ω),H1

0(Ω\ω)
− ν

∫
Ω\ω
∇H :∇v.

(A.5)

According to [10, Lemma 3.3] or [26, Theorem 3.2], we define ϕN ∈ H1(Ω\ω) such that

divϕN = 1 in Ω\ω, ϕN = 0 on ∂Ω\O and ϕN = 0 on ∂ω with
∫
O
ϕN · n 6= 0. Let

v ∈ H1(Ω\ω) such that v = 0 on ∂Ω\O, v = 0 on ∂ω and define

cb(v) =
1∫

∂(Ω\ω)ϕN · n

∫
∂(Ω\ω)

v · n.

Using again [10, Lemma 3.3] or [26, Theorem 3.2], we define v2 ∈ V O(Ω\ω) in such a way
that v = v1 + v2 + cb(v)ϕN , where v1 ∈ H1

0(Ω\ω) satisfies div v1 = div (v − cb(v)ϕN ).
Using (A.3) and (A.5), we then obtain∫

Ω\ω
ν∇U :∇v −

∫
Ω\ω

p div v = 〈f ,v〉Ω\ω − ν
∫

Ω\ω
∇H :∇v

−
〈
hO − ν(∇H + t∇H)n,v

〉
O

+

∫
Ω\ω

ν∇U :∇(cb(v)ϕN )−
∫

Ω\ω
p div (cb(v)ϕN )

− 〈f , cb(v)ϕN 〉Ω\ω + ν

∫
Ω\ω
∇H :∇(cb(v)ϕN ) +

〈
hO − ν(∇H + t∇H)n, cb(v)ϕN

〉
O
.
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Therefore, choosing the additive constant for p such that∫
Ω\ω

p = ν

∫
Ω\ω
∇U : ∇ϕN

− 〈f , cb(v)ϕN 〉Ω\ω + ν

∫
Ω\ω
∇H :∇(cb(v)ϕN ) +

〈
hO − ν(∇H + t∇H)n, cb(v)ϕN

〉
O
,

we prove that there exists a unique pair (U , p) ∈ V O(Ω\ω) × L2(Ω\ω) such that for all
v ∈ H1(Ω\ω) with v = 0 on ∂Ω\O and v = 0 on ∂ω,∫

Ω\ω
ν∇U : ∇v−

∫
Ω\ω

p div v = 〈f ,v〉Ω\ω−ν
∫

Ω\ω
∇H :∇v−

〈
hO − ν(∇H + t∇H)n,v

〉
∂Ω
.

(A.6)
Step 2: estimate. Let v := ṽ + c(p)ϕN , where

c(p) :=
1

|Ω\ω|

∫
Ω\ω

p

and ṽ ∈ H1
0(Ω\ω) is such that div ṽ = p − c(p) and ‖ṽ‖H1

0(Ω\ω) ≤ C ‖p‖L2(Ω\ω) (see [10,
Lemma 3.3]). Using v in (A.6), and according to (A.4), we obtain

‖U‖H1(Ω\ω) + ‖p‖L2(Ω\ω)

≤ C
(
‖f‖[H1(Ω\ω)]

′ + ‖hint‖H1/2(∂ω) + ‖hext‖H1/2(∂Ω\O) + ‖hO‖H−1/2(O)

)
and hence

‖u‖H1(Ω\ω) + ‖p‖L2(Ω\ω)

≤ C
(
‖f‖[H1(Ω\ω)]

′ + ‖hint‖H1/2(∂ω) + ‖hext‖H1/2(∂Ω\O) + ‖hO‖H−1/2(O)

)
.

B Some results on the exterior Stokes problem

First, we recall the definition of the weighted Sobolev spaces. We introduce the weight
function ρ(x) := (2 + |x|2)1/2 and the following Sobolev spaces (for more details, see [3]):

Definition B.1. Let 1 < p < ∞. For each real number α and each open set O ⊂ Rd, we
set

Lpα(O) :=
{
u ∈ D′(O), ραu ∈ Lp(O)

}
,

W1,p
α (O) :=

{ {
u ∈ D′(O), u ∈ Lpα−1(O), ∇u ∈ Lpα(O)

}
if d

p + α 6= 1,{
u ∈ D′(O), (ln(ρ))−1u ∈ Lpα−1(O), ∇u ∈ Lpα(O)

}
if d

p + α = 1.

Consider now the space
◦

W
1,p

α (O) := D(O)
‖·‖

W
1,p
α (O). It is standard to check that

◦
W

1,p

α (O) =
{
v ∈W1,p

α (O), v ∂O = 0
}
.

The dual space of
◦

W
1,p

α (O) is denoted by W−1,p′

−α (O), where p′ is such that
1

p
+

1

p′
= 1 (it

is a subspace of D′(O)).
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Notice that these spaces are reflexive Banach spaces with respect to the norms:

‖u‖Lpα(O) := ‖ραu‖Lp(O) ,

‖u‖
W1,p
α (O)

:=


(
‖u‖p

Lpα−1(O)
+ ‖∇u‖p

Lpα(O)

)1/p
if d

p + α 6= 1,(∥∥∥ u
ln(ρ)

∥∥∥p
Lpα−1(O)

+ ‖∇u‖p
Lpα(O)

)1/p

if d
p + α = 1.

We also recall the following theorem extracted from [28, Theorem 3.4 and Remark 3.4]
which guarantees the existence and uniqueness of the solution of an exterior Stokes problem
with Dirichlet boundary conditions:

Theorem B.2 (Girault et al., [28]). Let O be a Lipschitz-continuous exterior domain. For
each f ∈W−1,2

0 (O), g ∈ L2(O) and for each ϕ ∈ H1/2(∂O), the problem
−ν∆u+∇π = f in O

divu = g in O
u = ϕ on ∂O

has a unique solution (u, π) ∈W1,2
0 (O)×L2(O). Moreover, there exists a positive constant

C = C(d,O, ν) such that

‖u‖
W1,2

0 (O)
+ ‖π‖L2(O) ≤ C

(
‖f‖

W−1,2
0 (O)

+ ‖g‖L2(O) + ‖ϕ‖H1/2(O)

)
.

Finally we recall that E(y) =
1

8πν ‖y‖
(I + er

ter) with er :=
y

‖y‖
is the Green function

associated to the Stokes system (see (3.1)). For an integrable vector ϕ on ∂ω, we introduce
the following integral operator (called simple layer hydrodynamic potential operator) for
all y /∈ ∂ω:

Sϕ(y) :=

∫
∂ω
E(y − x)ϕ(x)ds(x).

Now we claim a theorem extracted from [25, §XI.B.5, Theorem 1, page 697–698]:

Theorem B.3. Let ω an open bounded open set of RN (N = 2, 3). Let g ∈ H1/2(∂ω) such

that
∫
∂ω
g ·n = 0. We consider (w, s) ∈W1,2

0 (R3\ω)×L2(R3\ω) the solution of the Stokes

exterior problem 
−ν∆w +∇s = 0 in R3\ω

divw = 0 in R3\ω
w = g on ∂ω.

Hence the velocity w can be written thanks to the representation formula with hydrodynam-
ical potential

w(y) = Sη(y) =

∫
∂ω
E(y − x)η(x)ds(x), y ∈ R3\ω,

where η ∈ H−1/2(∂ω)3/R is the unique solution of

Sη(y) = g(y) ∀y ∈ ∂ω.

Here R is the equivalence relation t ∼ t′ if t− t′ = λn, λ ∈ R.

Moreover S is an isomorphism from H−1/2(∂ω)/R into
{
g ∈ H1/2(∂ω),

∫
∂ω
g · n = 0

}
.
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C A result concerning the space of traces

Here we recall a result used in the paper concerning the boundary values of functions, in
particular when domains depend on a parameter (see [39, Chapter 4]):

Theorem C.1 ([39] Section 4.1.3. page 214). Let Ω and ω be two bounded simply connected
domains of RN (N ≥ 2) of class C0,1. Let p ∈ (1,+∞), ε ∈ (0, 1/2) and ωε := εω. Let us
assume that ωε ⊂ Ω and that there exists a constant c > 0 depending only of N , p, ω and
Ω such that d(ωε, ∂Ω) > cε. Then

〈·〉p,∂ωε ∼ a(ε) ‖·‖Lp(∂ωε)
+ [·]p,∂ωε

where

〈f〉p,∂ωε := inf
{
‖u‖W1,p(Ω\ωε) , u ∈W1,p(Ω\ωε), u ∂ωε = f

}
,

a(ε) :=


ε

1−N
p min(1, ε

N
p
−1

), for p < N

ε
1−N
p min(1, |log ε|

1−p
p ), for p = N

ε
1−N
p , for p > N,

and

[f ]1,∂ωε := |∂ωε|−1
∫ ∫

∂ωε×∂ωε
|f(x)− f(y)| ds(x)ds(y)

[f ]p,∂ωε :=

(∫ ∫
∂ωε×∂ωε

|f(x)− f(y)|p

|x− y|N+p−2
ds(x)ds(y)

)1/p

for p ∈ (1,+∞).
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[40] O. A. Olĕınik, A. S. Shamaev, and G. A. Yosifian. Mathematical problems in elasticity
and homogenization, volume 26 of Studies in Mathematics and its Applications. North-
Holland Publishing Co., Amsterdam, 1992.

[41] J. Pommier and B. Samet. The topological asymptotic for the Helmholtz equation
with Dirichlet condition on the boundary of an arbitrarily shaped hole. SIAM J.
Control Optim., 43(3):899–921 (electronic), 2004.

[42] A. Schumacher. Topologieoptimisierung von Bauteilstrukturen unter Verwendung von
Lopchpositionierungkrieterien. Thesis, 1995. Universität-Gesamthochschule-Siegen.

[43] J. Sokołowski and A. Żochowski. On the topological derivative in shape optimization.
SIAM J. Control Optim., 37(4):1251–1272 (electronic), 1999.

33


	Introduction
	The problem setting
	The main results
	Introduction of the needed functional tools
	The results

	Asymptotic expansion of the solution of the Stokes problem
	Some notations and preliminaries
	Uniform a priori estimates
	Proof of Proposition 4.1

	Proof of Theorem 3.1
	A preliminary lemma
	Splitting the variations of the objective
	Asymptotic expansion of AN
	Asymptotic expansion of AD
	Conclusion of the proof: asymptotic expansion of JKN

	Numerical Simulations
	Framework of the numerical simulations
	First simulations
	Influence of the distance to the location of measurements
	Influence of the size and the shape of the objects
	Influence of the size of the domain where measurements are made

	Conclusion
	Some results on the Stokes problem with mixed boundary conditions
	Some results on the exterior Stokes problem
	A result concerning the space of traces

